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In a recent paper �S. El Boustani, P. R. Buenzli, and P. A. Martin, Phys. Rev. E 73, 036113 �2006�� about
quantum charges in equilibrium with radiation, among other things the asymptotic form of the electric-field
correlation has been obtained by a microscopic calculation. It has been found that this correlation has a
long-range algebraic decay of the form 1/r3 �except in the classical limit�. The macroscopic approach, in the
Course of Theoretical Physics of Landau and Lifshitz, gives no such decay. In this Brief Report we revisit and
complete the macroscopic approach of Landau and Lifshitz and suggest that, perhaps, the use of a classical
electromagnetic field by El Boustani et al. was not justified.
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I. INTRODUCTION

We consider the equilibrium quantum statistical mechan-
ics of an infinite and homogeneous system of nonrelativistic
charged particles coupled to electromagnetic radiation. For
this system, we investigate the correlation function of the
electric field at equal times �Ei�r1�Ej�r2�� where Ei�r1� is the
quantum operator for the ith Cartesian component �i
=1,2 ,3� of the electric field at point r1 and �…� denotes a
quantum statistical average at temperature T; in the present
homogeneous medium, this correlation function depends on
r1 and r2 only through r=r1−r2= �x1 ,x2 ,x3�. We want to
compute the form of this correlation function, when r be-
comes large compared to the microscopic scale.

A macroscopic approach to this problem had been made a
long time ago by Landau and Lifshitz �LL� in their famous
Course of Theoretical Physics �1,2�. Actually, their theory
has been written for any medium, characterized by a com-
plex frequency-dependent dielectric function ����. Recently,
a microscopic theory has been elaborated by El Boustani,
Buenzli, and Martin �BBM� �3�. They find an electric-field
correlation function in disagreement with the one advocated
by LL: while BBM find that the correlation function has a
long-range power-law decay of the form 1/r3 �except in the
classical limit�, I could not extract this algebraic decay from
the work of Landau and Lifshitz. The reason for this dis-
agreement is an open problem.

As a first step for clarifying this problem, the present
paper revisits and completes the macroscopic approach of
LL. Section II summarizes this approach, making it more
explicit about the decay of the electric-field correlation func-
tion. In Sec. III, the formalism is applied to the special case
of a one-component plasma. Section IV is a Conclusion
where the above-mentioned discrepancy is discussed.

II. MACROSCOPIC APPROACH

A. The results of Landau and Lifshitz

LL have solved the macroscopic Maxwell equations, in a
medium characterized by a complex frequency-dependent di-

electric function ����, in presence of a random field. This
macroscopic approach is expected to be valid only for dis-
tances large compared to the microscopic scale. The
fluctuation-dissipation theorem is used for obtaining the
electric-field correlation as a Fourier transform with respect
to r and the time difference �here this time difference is
zero�,

�Ei�r1�Ej�r2�� = �
−�

� d�

2�
� d3k

8�3 exp�ik · r�Eij�k,�� , �1�

where, in terms of the wave vector k and the frequency �
�see §76 and 77 of �2��,

Eij�k,�� = − 4�� coth
��

2T
Im

�2/c2

��2/c2����� − k2

���ij −
c2

�2����
kikj	; �2�

� is Plank’s constant divided by 2�, c is the velocity of light
in vacuum, T is the temperature in units of energy.

In order to make easier the comparison with the paper by
BBM, we shall now separate �2� in its longitudinal and trans-
verse parts.

B. Longitudinal and transverse correlations

Introducing the projectors kikj /k2 and �ij − �kikj /k2� on the
longitudinal and transverse parts of the electric-field correla-
tion functions, we can rewrite �2� as

Eij�k,�� = Eij
l �k,�� + Eij

t �k,�� , �3�

where the longitudinal part is

Eij
l �k,�� = − 4�� coth

��

2T
Im

1

����
kikj

k2 �4�

and the transverse part is

Eij
t �k,�� = − 4�� coth

��

2T
Im

�2/c2

��2/c2����� − k2
�ij −
kikj

k2 � .

�5�

It should be noted that the cross correlation between the lon-
gitudinal and transverse parts of the electric field vanishes.
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Indeed, in Fourier space, in terms of the Fourier transforms
of these fields El�k ,�� and Et�k ,��, the cross correlation
tensor is proportional to �El�k ,��Et�−k ,−���, where El is
along k and Et is normal to k. Since the medium is isotropic,
the correlation tensor is unchanged if Et is replaced by its
opposite; therefore, the correlation tensor is equal to its op-
posite, i.e., it vanishes.

The integral on � of �4� converges; in particular, near �
=0, the dielectric function ���� behaves like 4�i	 /�, where
	 is the static conductivity �1� �see Sec. III for the special
case of a one-component plasma� and �4� is finite at �=0.
The Fourier transform of 4� /k2 is 1 /r and the longitudinal
part of �1� is

�Ei�r1�Ej�r2��l = 
�
−�

� d�

2�
� coth

��

2T
Im

1

����� �2

�xi�xj

1

r
.

�6�

At small k, in �5�, the term ��2 /c2� / ���2 /c2�����−k2��
can be replaced by 1/����. Indeed, if ��0, this term can be
expanded in powers of k2 and 1/���� is the leading term. If
���
�0, where �0 is a sufficiently small constant, ����
=4�i	 /�, � coth ��

2T =2T /�, and

�
−�0

�0 d�

2�
Eij

t �k,�� =
2T

�	
��0 −

�ck�2

4�	
arctan

4�	�0

�ck�2 	
�
�ij −

kikj

k2 � . �7�

At small k, the arctan in �7� behaves like � /2. Finally, for all
values of �, at small k

Eij
t �k,�� 
 − 4�� coth

��

2T
�
Im

1

����
� + O�k2�	

�
�ij −
kikj

k2 � . �8�

The asymptotic behavior of the transverse part of �1� is
given by the most singular part at small k of �8�, which is just
opposite to �4�, i.e., the asymptotic form of �Ei�r1�Ej�r2��t is
opposite to �6�. These asymptotic behaviors of the form 1/r3

cancel each other in the total correlation function �1�. This
cancellation had been previously noted �6,7� in the classical
limit T→�, but the present macroscopic approach predicts
that this cancellation persists in the quantum regime at any
temperature, contrarily to the prediction of the microscopic
theory of BBM.

The integral on � in �6� is simply related to the second
moment of the charge correlation function. Indeed the charge
density � is given by the Poisson equation div E=4��. Only
the longitudinal part of E has a nonvanishing divergence.
Therefore, since the Fourier transform �4� of �Ei�r1�Ej�r2��l

is of the form Akikj /k2, the Fourier tranform of ���r1���r2��
is �4��−2Ak2, which means that A is −�3��−1 times the sec-
ond moment of this charge correlation function. Taking the
inverse Fourier transform of Akikj /k2 gives for the longitu-
dinal field correlation

�Ei�r1�Ej�r2��l = −
�2

�xi�xj

1

r
�−

2�

3
� d3r�r�2���0���r���	 ,

�9�

for r large compared to the microscopic scale, in agreement
with a microscopic derivation �4,5�.

In the classical limit T→�, � coth ��
2T 
2T /� and the in-

tegral on � in �6� �which also occurs in the transverse part
with the opposite sign� has the simple value −T �6�. This can
be shown �7,8� by invoking that ���� has no zeros when � is
in the complex upper half-plane. The calculation is made in
the Appendix. Therefore, in the classical limit,

�Ei�r1�Ej�r2��l 
 − T
�2

�xi�xj

1

r
�10�

and

�Ei�r1�Ej�r2��t 
 T
�2

�xi�xj

1

r
; �11�

these classical results can also be obtained from �9� since, in
the classical case, the second moment in �9� obeys the
Stillinger-Lovett sum rule �9�

−
2�

3
� d3r�r�2���0���r��� = T . �12�

The asymptotic classical transverse correlation function �11�
is the one of a free field. This is in agreement with the Bohr–
van Leeuwen theorem �10–12� which says that, in equilib-
rium classical statistical mechanics, matter and radiation are
uncoupled.

III. ONE-COMPONENT PLASMA

A. Drude dissipationless dielectric function

The above formalism simplifies in the special case of a
one-component plasma, a system of one species of particles
of charge e, mass m, and number density n, in a neutralizing
homogeneous background. We are interested in small wave
numbers, when the dissipation goes to zero �13� �i.e., the
static conductivity is infinite�, and the dielectric function can
be taken as the Drude one

���� = 1 −
�p

2

��� + i��
, �13�

where �p= �4�ne2 /m�1/2 is the plasma frequency and the dis-
sipation constant � is taken as infinitesimal.

Then, using Im�1/�����=−��� / �����p
2���2−�p

2� in �4�,
one finds for the longitudinal correlation function

�Ei�r1�Ej�r2��l = −
1

2
��p coth

��p

2T

�2

�xi�xj

1

r
. �14�

In a similar calculation, using �13� in �5�, ���2−�p
2

−c2k2� appears, and one finds for the transverse correlation
function
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�Ei�r1�Ej�r2��t =� d3k

8�3 exp�ik · r�
1

2
���p

2 + c2k2�1/2

�coth
���p

2 + c2k2�1/2

2T
4�
�ij −

kikj

k2 � .

�15�

For small k, the k-singularity in �15� comes from the term
kikj /k2 with the replacement of ��p

2 +c2k2�1/2 by �p. Then,
one finds for the asymptotic form of the transverse correla-
tion function just the opposite of the longitudinal one �14�.

B. Longitudinal and transverse modes

The above results for the electric-field correlation func-
tions can also be obtained, perhaps in a more transparent
way, from the modes of vibration of the plasma. In this sub-
section, we shall not use the dielectric function ����, but
rather take into account explicitly in the equations the charge
and electric-current densities.

For every wave vector k there is a longitudinal mode; its
frequency �14� is �p �neglecting a term of order k2, which is
consistent with the previous use of an � independent of k�. In
such a mode the electric field, at position r and time t, is of
the form

Ek�r,t� = Re�k/k�E0 exp�ik · r − i�pt� . �16�

Since this mode is an oscillator, for studying it in quantum
mechanics we can first use classical mechanics and quantize
at the end. A collective velocity, vk, is given by Newton’s
law:

m
dvk

dt
= eEk. �17�

From �17� one easily finds that the temporal average of the
kinetic energy density associated to vk is equal to the tem-
poral average of the energy density of the electric field. Tak-
ing into account that the temporal average of the squared real
electric field is �E0�2 /2 and equating the temporal average of
the total energy to the statistical average value for an oscil-
lator �including the zero-point energy� gives

�E0�2

8�
=

1

V

��p

2
coth

��p

2T
, �18�

where V is the volume of the system. The contribution of this
mode �16� to the electric-field correlation is
Re��E0�2 /2�exp�ik·r��kikj /k2�, where �E0�2 is given by �18�.
Summing on all k wave vectors, i.e., computing the integral
V�d3k / �8�3�. . . reproduces �14�.

For every wave vector k, there are also two �there are two
possible polarizations� transverse modes of frequency �14�
�k= ��p

2 +c2k2�1/2. For such a mode, the electric field is of the
form

Ek�r,t� = Re eE0 exp�ik · r − i�kt� , �19�

where e is a unit vector normal to k, and the magnetic-
induction field is

Bk�r,t� =
c

�k
k Ã Ek. �20�

Again, a collective velocity is given by Newton’s law �17�
�the magnetic force can be neglected for nonrelativistic ve-
locities�. The temporal average of the electric-field energy
density is �E0�2 / �16��. The temporal average of the kinetic
energy density is ��p

2 /�k
2��E0�2 / �16��, from �17�. The tempo-

ral average of the magnetic-induction energy density is
�c2k2 /�k

2��E0�2 / �16��, from �20�. Thus, the temporal average
of the total energy density again is �E0�2 / �8��, and

�E0�2

8�
=

1

V

��k

2
coth

��k

2T
. �21�

The contribution of the transverse mode �19� to the electric-
field correlation is Re eiej��E0�2 /2�exp�ik·r� where �E0�2 is
given by �21�. Adding the contribution of the other polariza-
tion replaces eiej by �ij − �kikj /k2�. Summing on all k wave
vectors reproduces �15�.

IV. CONCLUSION

The macroscopic approach of LL is in agreement with the
microscopic calculation of BBM, for the longitudinal part of
the electric-field correlation �incidentally, this agreement is
an indication that the macroscopic approach can be correct�.
The disagreement is about the transverse part only, which
exactly cancels �6� in the macroscopic approach while it
obeys �11� in the microscopic approach �3�, even in the quan-
tum regime. I am tempted to believe that the cancellation
predicted by the macroscopic calculation is essentially cor-
rect. Here are my reasons.

BBM �3� point out that the macroscopic theory of LL uses
a local dielectric function ���� rather than a k-dependent
one. Indeed, it is tempting to use a longitudinal �l�k ,�� in �4�
and a transverse �t�k ,�� in �5�. However, the leading �singu-
lar� term of �4� or �5� at small k would be still obtained by
taking these k-dependent dielectric functions at k=0 where
both of them become ����. Thus, a singular term �15� in the
small-k expansion of �l�k ,�� and/or �t�k ,�� would not
change the prefactors of the terms kikj /k2 �this cancellation
only concerns the asymptotic terms of the form 1/r3, how-
ever an algebraic decay faster than 1/r3 could remain�. BBM
make another criticism of the macroscopic approach of LL: it
neglects the magnetic permeability. It would be strange that
taking the magnetic permeability into account in the macro-
scopic approach would change the transverse correlation
function into the one of a free field �however, it might bring
small corrections to the results of LL �16��.

The final remark by BBM might be the key point: in their
microscopic approach, they use a classical electromagnetic
field. That their asymptotic transverse correlation is the one
of a free field, decoupled from matter, even in the case of
quantum particles, might be due to this feature of their cal-
culation. In Sec. III B, I have argued that the transverse
modes certainly feel the presence of matter. Perhaps the ar-
gument, in the third paragraph of the Introduction of BBM,
in favor of using a classical electromagnetic field, has a flaw:
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The frequency of a transverse mode is always larger than the
plasma frequency �p, and the condition 
�ck�1 does not
imply that 
��p�1.

The microscopic calculation of BBM is very elaborate,
cleverly using an elegant path-integral formalism. It would
certainly be very interesting to redo this microscopic calcu-
lation with a quantized electromagnetic field, if feasible.
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APPENDIX

This Appendix is based on a private message from B. U.
Felderhof. In the classical limit, the integral in �6� becomes
TI where I is

I =
1

�
�

−�

� d�

�
Im

1

����
. �A1�

We want to show that I=−1.
Since �*���=��−�*�, I can be rewritten as

I =
1

i�
�

−�

� d�

�

1

����
. �A2�

Since ���� has no zeros in the upper complex half-plane �1�,
the integral along the real axis in �A2� can be changed into
an integral along the half-circle C at infinity in the upper
half-plane. Since � is 1 at infinity, this integral is �Cd� /�=
−i�. Therefore, I=−1.

The same reasoning applies to the transverse part. Com-
paring �4� and �5�, one sees that, on the half-circle at infinity,
1 /� and ��2 /c2� / ���2 /c2��−k2� have the same limit 1. Fur-
thermore, the term kikj /k2 in �4� and the term �ij − �kikj /k2� in
�5� will have opposite inverse Fourier transforms for r�0.
Thus, �11� is just opposite to �10�.
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